
ia

PHYSICAL REVIEW E, VOLUME 64, 036702
Supersonic motion of vacancies in a polyethylene crystal
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The possibility of supersonic motion of vacancies in a polyethylene crystal is revealed by means of analyti-
cal investigation and numerical simulation. It is demonstrated that in the crystalline field of immovable neigh-
bors, a vacancy with a core size of about 70 CH2 groups and a velocity in the range of 1.02–1.05 sound
velocity preserves itself for the time scale of about 1 ns. It is demonstrated that this type of structural defect is
similar to coupled supersonic solitons described earlier in the one-dimensional chains with combined gradient
and nongradient nonlinearity. An analytic approach is proposed for prediction of their shape and velocity. The
simulation of the crystal with all degrees of freedom released demonstrates that the supersonic vacancy is still
distinguishable. Its lifetime is less than 5 ps but still may be significant for physical applications.
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I. INTRODUCTION

The concept of vacancy as a structural defect in crys
related to the absence of one or more atoms or atomic gro
is very important in various branches of solid state phys
Usually the vacancies are characterized by a single param
~dilatation volume@1#!, which may be evaluated empiricall
in different ways. For some physical problems nonisotro
vacancy-type defects should be considered and more pa
eters are required@2#. Still, these parameters remain free p
rameters of phenomenological theory. The determination
the parameters of vacancy from molecular potentials of
teraction requires solution of a three-dimensional nonlin
problem, which usually is intractable.

Polymer crystals are believed to be an important exc
tion. The simplification is possible due to strong anisotro
of the system, related to the difference between intramole
lar and intermolecular interactions. The vacancy core w
nonlinear interactions may be concentrated at one chain
the problem turns out to be effectively one dimensional w
the interaction with neighboring chains considered as sm
perturbation@3–5#.

Two types of such vacancies are explored. The first t
constitutes one chain stretched in such a way that exa
two CH2 groups are absent and crystalline order may
preserved at infinity@6#. This type is referred to as a biva
cancy, since two units are absent. The second type is a c
bination of the chain twist and stretching, which makes
possible for only one group to be absent. This defect rep
sents a simple vacancy. Both types of defects may be at
or move with subsonic velocities—such behavior is rat
typical for vacancies. Similar results were obtained for ot
polymer systems@7,8#.

There exists one type of nonlinear excitation in an is
lated polyethylene chain that propagates with supersonic
locity and constitutes the localized wave of tension. The r
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son for such behavior is the nonlinearity of valence an
interaction@9#. If such a localized wave of tension propa
gated in a chain surrounded by neighboring chains in a c
tal, one would get the example of a vacancy moving w
supersonic velocity. It is rather reasonable to expect that s
a solution will exist. The chain surrounded by the immovab
neighbors is very similar to the models of a chain with co
bined gradient and nongradient nonlinearities@10,11#. These
models are shown to have supersonic localized solutions
responding to coupled solitons. However, it is unknow
whether such a solution will exist under concrete conditio
of a polyethylene crystal.

The other question is whether the model of immova
neighbors is in any way realistic for the description of t
excitation of this type in a crystal. In other words, it is u
known whether the supersonic excitation will persist in
polyethylene~PE! crystal with all degrees of freedom re
leased. This type of wave motion seems to be absolu
impossible in common low-molecular crystals because
supersonic excitation would cause very strong radiation
to Cherenkovs effect. However, rather weak intermolecu
interaction in a PE crystal allows for a sufficiently long life
time of the supersonic excitation despite the radiation. A
other unaddressed question~even in the case of a singl
chain! is the interaction of the supersonic vacancies.

The purpose of the present paper is to explore the pr
erties of supersonic vacancy in a PE crystal. In the sec
section analytical treatment of the motion of the superso
vacancy in a chain surrounded by immovable neighbor
chains is presented. The third section deals with numer
simulation of the vacancy motion both in the case of immo
able neighbors and when all degrees of freedom are relea
Interaction of the vacancies is also investigated.

II. ANALYTICAL TREATMENT

Let us consider the nonlinear dynamics of a single
chain in the plane trans-conformation~Fig. 1!. The chain is
composed of CH2 groups having massm. The lengths of the
©2001 The American Physical Society02-1
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valence bonds are considered to be fixed and equal tol. This
approximation is correct in the case considered since th
gidity of the valence bonds is about two orders more than
rigidity of the valence angles. The energy associated with
deformation of potential anglesu is determined by potentia
function

U3~u!5
1

2
Ku~u2u0!2, ~1!

whereu0 is the equilibrium value of the valence angle.
The dynamics of the chain is considered in a continu

limit. The displacements of the masses in the direction of
z axis are denoted asun , and the displacements in the tran
versal direction asvn ~in Fig. 1, the arrows denote positiv
directions of the displacements!.

The potential energy of the chain is presented as

P5
1

2
Ku(

n
~un2u0!2, ~2!

and its kinetic energy as

K5
1

2
m(

n
~ u̇n

21 v̇n
2!. ~3!

The changes of the anglesun2u0 may be expressed vi
the displacements of the masses. Then, the requireme
fixed length of the valence bonds makes the values ofun and
vn not independent and allows us to express the Lagra
function of the chain,

L5K2P, ~4!

via the variablesun and u̇n only. Then, if it is supposed tha
un changes slowly with respect ton, it is possible to make a
transition to continuum variablesz and t and to express ev
erything via functionu(z,t).

Let us introduce the notions

s5 sin
u0

2
, c5 cos

u0

2
. ~5!

The condition of fixed length of the valence bonds is th
expressed as

FIG. 1. Scheme of the polyethylene chain in the transzig
conformation~approximation of united atoms!.
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~ ls1un112un!21~ lc1vn111vn!25 l 2. ~6!

Consequently, we get

2ls~un112un!12lc~vn111vn!1~un112un!2

1~vn111vn!250,

and, supposingvn to be small compared toun and preserving
small terms up to the second order, we finally get

vn111vn52
s

c
~un112un!2

1

2lc3
~un112un!2. ~7!

The relationship betweenun and the displacements of th
adjacent masses may be calculated as

l 2 cosun52 ln21• ln ,

where

ln[$ ls1un112un ,lc1vn111vn%,

ln21[$ ls1un2un21 ,2 lc2vn2vn21%.

Then, the expression for the angle obtains the form

cosun5 cosu01
c

l
@~vn1vn21!1~vn111vn!#

1
1

l 2
~vn1vn21!~vn111vn!2

s

l
~un112un21!

2
1

l 2
~un2un21!~un112un!. ~8!

Substituting Eq.~7! into Eq. ~8! and preserving the term
with appropriate order of magnitude, we get

cosun2 cosu052
2s

l
~un112un21!2

1

2l 2c2
@~un2un21!2

1~un112un!2#2
cosu0

l 2c2
~un2un21!

3~un112un!. ~9!

From the other side,

cosun5 cos@u02~un2u0!#

5 cosu0 cos~un2u0!2 sinu0 sin~un2u0!.

Preserving the terms up to the second order of magnitude
obtain

un2u052
cosun2 cosu0

sinu0
2

cosu0

2 sin3 u0

~cosun2 cosu0!2.

~10!

g
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Substitution of Eq.~9! into Eq.~10! expressesun2u0 via the
displacements of masses in the direction of the chain ax

Let us perform the transition to the continuum variabl
The variablesun61 are expressed via the derivatives ofu(z)
up to the fourth order,

un615un6 lsun81
~ ls!2

2
un96

~ ls!3

6
un-1

~ ls!4

24
un

(4) .

~11!

Using the expression forun2u0 and retaining the terms o
appropriate order of magnitude, we get the expression for
potential energy,

P5
2s2

c2
KuE

2`

` dz

ls Fuz
21

1

3
s2l 2uzuzzz1

s2

c2
uz

3G . ~12!

The condition~7! leads to the following relationship betwee
u andv in the continuum limit:

v̇52
ls2

2c
uzt . ~13!

The kinetic energy is thus expressed as

FIG. 2. Plots of the velocity~a! and inverse half-width~b! of the
soliton versus overall displacement.
03670
.

e

K5
1

2
mE

2`

` dz

ls
~ u̇21 v̇2!5

1

2
mE

2`

` dz

ls S ut
21

s4l 2

4c2
uzt

2 D .

~14!

The dynamical equation of the chain may be expressed
the Lagrange function in the following form:

]L

]u
2

]

]t

]L

]ut
2

]

]z

]L

]uz
1

]

]t

]

]z

]L

]uzt
2

]3

]z3

]L

]uzzz
50.

~15!

After simple calculations we get

utt2VS
2Fuzz1

3s2

c2
uzuzz1

1

3
s2l 2uzzzzG2

s4l 2

4c2
uzztt50,

~16!

whereVS5(2s/c)AKu/m is the sound velocity.
Equation~16! is not integrable but still its localized solu

tions may be computed in the form

u~z,t !5
d

2
$11th@k~z2Vt!#%. ~17!

Here V is the soliton velocity,k characterizes the inverse
half-width of the soliton, andd is the overall displacement of
the chain after the passage of the soliton. The relations
between these parameters of the solution is expressed a

k21
2

d

c2

s2 S 4

3

c2

s2
11D k2

c2

s4l 2
50,

V25Vs
2S 11

s2d

2c2
kD . ~18!

The concrete computations are performed with the f
lowing parameter values:Ku579.15 kcal mol21rad22; u0
5113°; l 51.53 Å, m514 amu. The sound velocity in this
case is equal to 14.71 km/sec. The plotsk(d) andV(d) are
presented in Fig. 2.

Let us take into consideration the field of immovab
neighbors of the chain considered. The surface of the pot
tial energy of the chain embedded in the crystal of equ
FIG. 3. Energetic surface
of immovable neighbor chains
@~a! and ~b! are different
representations#.
2-3
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chains is plotted in Fig. 3. The details of model used
numerical simulation incorporate with the parameters
intra- and intermolecular interaction are presented in
third section. We have considered the monoclinic structur
the crystal, where the planes of all macromolecules are
allel. The structure of the crystal was considered after
process of relaxation. The plots of potential energy of int
molecular interaction presented in Fig. 3 were obtained
artificial numerical rotation of the molecule chosen~the
anglew) and by the displacement along the axis~displace-
mentu) in the field of immovable neighbors. The macromo
ecule shape that corresponds to the energy minimum is
transzigzag; therefore, we may consider only longitudi
displacement of the chain. The interaction potential relate
this displacementU(u) is characterized completely by th
plots in Fig. 3, but for the purposes of the analytical tre
ment we need to know some parameters of this poten
The most natural values that characterize it are the heigh
the potential barrier atw50 H50.1753 kcal mol21 and the
period of small vibrations of the chain as a whole near
equilibrium positionT51.5 ps.

The intermolecular interaction may therefore be tak
into account via the effective on-site potentialU(u). The
motion equation for this case may be obtained easily fr
Eq. ~16! by adding the appropriate right-hand side,

utt2VS
2Fuzz1

3s2

c2
uzuzz1

1

3
s2l 2uzzzzG2

s4l 2

4c2
uzztt

52
1

m

]U~u!

]u
. ~19!

We do not know the exact analytical form of the potent
U(u). Moreover, Eq.~19! obviously has no chance to b
solved analytically since it is a partial nonlinear different
equation of the fourth order. We will use for its solution th
asymptotic procedure similar to one proposed in our pa
@12#. First, the approximation of the propagating wave
introduced,

u[u~z2Vt!. ~20!

Then, after substituting Eq.~20! into Eq. ~19!, we get

~V22VS
2!u92

3s2VS
2

c2
u8u92S 1

3
s2l 2VS

21
s4l 2V2

4c2 D u-8

52
1

m

]U~u!

]u
. ~21!

The apostrophe denotes the derivative with respect to
collective variablez2Vt.

Equation~21! may be simplified by substitutingp1/2(u)
5u8 and one integration with respect tou,
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~V22VS
2!p2

2s2VS
2

c2
p3/22S 1

3
s2l 2VS

21
s4l 2V2

4c2 D
3S ppuu2

1

4
pu

2D52
2

m
U~u!. ~22!

Now we have to take advantage of the information
have concerning the effective potentialU(u) ~due to period-
icity we restrict ourselves to consideration of the perio
2 ls<u< ls). This information may be summarized as fo
lows: ~a! U(0)5H; ~b! U( ls1«)5 1

2 m(2p«/T)2 ~to ensure
period T of small vibrations,«! ls); ~c! U8(0)50; ~d!
U (2k11)(6 ls)50 ~the potential wells are symmetric wit
respect to inversion!.

The conditions listed allow us to calculate the appropri
approximation for the functionp(u). This approximation is
searched for in the following form:

p~u!5
A2~u22 l 2s2!2

~12au2!2
. ~23!

Substituting Eq.~23! into Eq.~22! and taking into accoun
the information concerning the potentialU(u), one obtains
the system of three algebraic equations for parametersA, a
and for the velocity of the solitonV:

FIG. 4. Plotsu(z) for two localized solutions of equation~21!:
V51.385Vs ~1! andV51.012Vs ~2!.

FIG. 5. Schematic representation of a tensile defect.
2-4
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~V22VS
2!

4A* 2

~12a* !2
2S 1

3
VS

21
s2V2

4c2 D F 4A* 2

~12a* !2G 2

52S 2p ls

T D 2

,

~V22VS
2!A* 22

2s2VS
2

c2
A* 324S 1

3
VS

21
s2V2

4c2 D ~12a* 2!A* 4

52
2

m
H, ~24!

FIG. 6. Propagation of the vacancy in the chain surrounded
the immovable neighbors:~a! deformationD(n,t); ~b! displace-
ments of atoms in different time moments.

FIG. 7. Jump of the velocity of the vacancy.
03670
~V22VS
2!

4A* 2

~12a* !2

125a*

12a*
2

2s2VS
2

c2

8A* 3

~12a* !3

25S 1

3
VS

21
s2V2

4c2 D F 4A* 2

~12a* !2G 2
125a*

12a*
50.

HereA* 5Al2s2, a* 5al2s2.
The system of equations~24! is solved numerically and

has two sets of solutions in the supersonic region:~1! V
51.385Vs (520.38 km/sec),A* 50.51, a* 50.02 ~accu-
racy for this case is not very perfect, but the solution is rat
nonsensitive!; ~2! V51.012Vs (514.89 km/sec), A*
50.047,a* 50.52.

The plots of both solutions@u(z) versusz in units of ls]
are presented in Fig. 4. The first solution may be predic
rather straightforwardly if considering the solutions~17!,~18!
for a single chain when the overall displacement is cons
ered to be equal to 2ls ~in other words, the surrounding
chains preserve the long-range order but their effect in
core of the vacancy is neglected!. This solution has rathe
high velocity and is very narrow—the continuum model us
in the theoretical investigation is very doubtful for such
case.

The nature of the second solution is entirely differe
since it obviously cannot be treated as a small perturbatio
the solution for the chain without the crystalline field. It h
comparatively small velocity and is sufficiently smooth to
in line with the continuum approximation used. Therefore
may be a good candidate for the model of supersonic
cancy in a PE crystal. The next natural step is to check
applicability by means of numerical simulation.

III. NUMERICAL SIMULATION
OF THE SUPERSONIC VACANCY

In order to proceed with the numerical simulation of a P
crystal, we have used the model developed earlier@13#. The
rectangular cell of simulation consists of 23 polyethyle
chains (2CH22)300 and one chain with two CH2 groups
less in order to generate the conditions for formation of
supersonic vacancy. Periodic boundary conditions are
plied in all directions and therefore any excitations are
lowed to move within infinitely large distances. Polym
chains were modeled in the transzigzag conformation. C2
groups were introduced as united atoms with massm514

y

FIG. 8. Shape of the vacancy for the lower value of the veloc
V51.03Vs .
2-5
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amu. The valence bonds were supposed to have fixed le
l 51.53 Å. The interatomic interaction was described
means of potential functionU(r ),

U~r !5( U3~u i !1( U4~w i !1( Unb~ ur i2r j u!.

~25!

Here r[$r1 , . . . ,rN% are the position vectors of all unite
atoms in the cell; the first term in the right-hand side conta
the summation over all valence angles, the second one
all conformational angles, and the third over all pairs of p
ticles connected neither by valence angle nor by confor
tional angle interactions. The model takes into account
only the interactions within the cell but also the interactio
with the particles of image cells due to period
boundary conditions. The valence angle potential
introduced as

U3~u!5
1

2
Ku~u2u0!2. ~26!

FIG. 9. Decay of the vacancy to four solitons—plots of d
placements at different time moments.

FIG. 10. Velocity of the first atom at successive passages of
supersonic vacancy in the surrounding of immovable neighbors~a!
and in isolated chain~b!.
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Hereu05113° is the equilibrium value of the valence ang
and Ku579.15 kcal mol21 rad22 is the force constant. The
potentials of the torsion angles were computed as

U4~w!5a cos~w!1b cos3~w!1g, ~27!

where a54.397 kcal/mol, b56.398 kcal/mol, g51.998
kcal/mol. All atoms not connected by either of the two abo
potentials interact via the following Lennard-Jones type p
tential:

Unb~r !5H ULJ~r !2ULJ~R!, r<R

0, r>R
. ~28!

Here ULJ(r )54«@(s/r )122(s/r )6# is standard Lennard
Jones potential;R is the limit distance of interaction. We
have used the following parameter values:«50.12
kcal/mol, s53.8, andR52.25s.

The equations of motion of the system with geometri
constraints imposed by fixed valence bonds are written
Cartesian components as Lagrange equations of the
type,

mi

d2r i

dt2
52

]U

]r i
1(

n
ln

] f n

]r i
. ~29!

These equations, together with algebraic conditions of fix
valence bonds

f n~r !50, n51, . . . ,N, ~30!

provide a complete description of the dynamics of the s
tem, provided that the appropriate initial conditions are a
determined. The algorithm of integration is presented in
tail elsewhere@13#. The sizes of the calculation cell wer
3a34b3150c, 3a34b3200c, and 3a34b3300c, where
a57.031, b54.510, andc52.554 Å are the parameters o
the cell corresponding to the energy minimum.

The first series of numerical experiments was the inve
gation of the vacancy motion in the field of immovab
neighbors. To perform this calculation the initial conditio
of the particles of the short chain were introduced accord
to the formula~17! with different initial velocities. The other
chains were artificially fixed. The initial situation for th
simulation is schematically plotted in Fig. 5.

Starting from very different initial situations, the supe
sonic vacancy almost always~excluding the cases with rela
tively small initial energy! tended to a steady-shaped soluti
having a velocity of about 15.5 km/sec ('1.054Vs) and a
width of about 90 Å or 70 bonds~see Fig. 6!. This param-
eter is in rather good agreement with the results of the a
lytical treatment presented above, although the width of
vacancy turns out to be about 30% more. Probably the ac
racy of the analytical procedure may be increased by con
eration of further approximations but such treatment is
tremely difficult from a technical point of view.

Great efforts were made to establish the exact shape o
solution, or, in other words, to eliminate phonons from t
system in order to get pure soliton. Special friction was
troduced far from the core of the vacancy and the shape

e

2-6
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FIG. 11. Motion of the super-
sonic vacancy in the crystal with
all degrees of freedom:~a! defor-
mation D(n,t); ~b! displacements
of atoms in different time
moments.
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repeated itself for a long time. However, the discretenes
the lattice leads to small irradiation of energy and the soli
loses its energy.

Interestingly, this loss does not occur smoothly. The
ergy of the vacancy decreases very slowly until it jumps t
new supersonic state with lower velocity~about
15.15 km/sec or 1.03Vs) and even larger lifetime~we did
not observe any further decay of this solution!. The jump of
the soliton velocity in presented in Fig. 7 and the shape
the vacancy with lower velocity in Fig. 8. The lifetime of th
vacancy in the field of immovable neighbors was proved
be not less than 1 ns.

As mentioned above, the analytic solution with high
velocity ~which cannot persist in the crystal! corresponds to a
single soliton of a single chain with appropriate overall d
placement. If the supersonic vacancy is transferred to
chain not interacting with the neighbors, it decays to a
quence of four solitons moving with close but different v
locities, the lowest one corresponding to the velocity of
vacancy~Figs. 9 and 10!. This result means that the supe
sonic vacancy represents the coupled state of few soliton
the polyethylene chain. Such coupling is impossible in
single chain and occurs due to on-site potential of the ne
boring chains. The possibility of such coupling was d
cussed earlier in@14#, but a PE crystal is the first physica
system where this effect may be at least simulated. The p
nomenon of the soliton coupling allows us to explain t
effect of smooth decay and subsequent ‘‘drop’’ of the ene
of the vacancy. The additional energy may be attributed
alternative metastable coupled state of the soliton form
the vacancy. Both coupled states correspond to the same
03670
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lyticsolution, as it considers only the smooth approximati
of the vacancy shape and does not take into account its
structure.

The crucial physical question to be solved by mea
of numerical simulation is whether the supersonic vaca
investigated in the model system of immovable neighb
will persist in a realistic model with all degrees of fre
dom released. The results of appropriate simulations
presented in Fig. 11. It is demonstrated that within t
characteristic times of about 5 ps~or at characteristic dis-
tances of about 75 nm! the supersonic vacancy does not lo
its individuality and propagates with a velocity close
15 km/sec. This fact substantiates the idea of consider
effect of the supersonic vacancies investigated above on
processes in a polymer crystal where the vacancies are
volved.

The soliton nature of the supersonic vacancy conside
justifies the investigation of collision of two such vacancie
The appropriate numerical simulation~see Fig. 12! demon-
strates that both in the case of immovable neighbors an
the case of all degrees of freedom released the vacan
interact almost elastically. Such behavior is typical to solit
solutions although the equations describing the motion of
vacancies are not integrable.

IV. CONCLUSION

New types of structural defects in a polyethylene crys
have been investigated. These structural defects are va
cies ~more exactly, bivacancies, because they require
FIG. 12. Collision of two va-
cancies:~a! immovable neighbors;
~b! movable neighbors.
2-7
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CH2 groups being absent! that move with supersonic veloc
ity. They have a considerable lifetime and therefore may p
ticipate in all the processes related to the motion of vac
cies. The asymptotic analytical procedure developed in
present paper is a reasonable tool for prediction of the p
erties of the vacancies investigated.
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@10# A. V. Savin, Zh. Éksp. Teor. Fiz.108, 1105~1995! @JETP81,

608 ~1995!#.
@11# O. M. Braun, Phys. Rev. E62, 7315~2000!.
@12# O. V. Gendelman and L. I. Manevitch, Zh. E´ksp. Teor. Fiz.

112, 1510~1997! @JETP85, 824 ~1997!#.
@13# N. K. Balabaev, O. V. Gendelman, and L. I. Manevitch, Ma

romol. Symp.106, 31 ~1996!.
@14# A.V. Savin and L. I. Manevitch, Phys. Rev. B58, 11 386

~1998!.
2-8


