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Supersonic motion of vacancies in a polyethylene crystal
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The possibility of supersonic motion of vacancies in a polyethylene crystal is revealed by means of analyti-
cal investigation and numerical simulation. It is demonstrated that in the crystalline field of immovable neigh-
bors, a vacancy with a core size of about 70,G#Houps and a velocity in the range of 1.02—1.05 sound
velocity preserves itself for the time scale of about 1 ns. It is demonstrated that this type of structural defect is
similar to coupled supersonic solitons described earlier in the one-dimensional chains with combined gradient
and nongradient nonlinearity. An analytic approach is proposed for prediction of their shape and velocity. The
simulation of the crystal with all degrees of freedom released demonstrates that the supersonic vacancy is still
distinguishable. Its lifetime is less than 5 ps but still may be significant for physical applications.
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[. INTRODUCTION son for such behavior is the nonlinearity of valence angle
interaction[9]. If such a localized wave of tension propa-
The concept of vacancy as a structural defect in crystalgated in a chain surrounded by neighboring chains in a crys-
related to the absence of one or more atoms or atomic groupigl, one would get the example of a vacancy moving with
is very important in various branches of solid state physicssupersonic velocity. It is rather reasonable to expect that such
Usually the vacancies are characterized by a single paramet@rsolution will exist. The chain surrounded by the immovable
(dilatation volume[1]), which may be evaluated empirically n_eighbors i_s very similar to t_he mode_ls of a chain with com-
in different ways. For some physical problems nonisotropic®ined gradient and nongradient nonlineari{i¢®,11. These
vacancy-type defects should be considered and more para,glodels are shown to have supersonic Iocallzgd _solutlons cor-
eters are requiref?]. Still, these parameters remain free pa-"€SPonding to coupled solitons. However, it is unknown

rameters of phenomenological theory. The determination o\{vhether such a solution will exist under concrete conditions
X : . —of a polyethylene crystal.
the parameters of vacancy from molecular potentials of in° N .
P y b The other question is whether the model of immovable

teraction requires solution of a three-dimensional nonlinear . hb o listic for the d inti £ th
problem, which usually is intractable. neighbors is in any way realistic for the description of the

Polymer crystals are believed to be an important excep‘—axc't"’ltlon of this type in a cry§tal. ”! ot.her w_ords, Itis un-
nown whether the supersonic excitation will persist in a

tion. The simplification is possible due to strong anisotrop .
of the system, related to the difference between intramolec _onethern_e(PE) crystal with aI_I degrees of freedom re-
eased. This type of wave motion seems to be absolutely

lar and intermolecular interactions. The vacancy core wit ossible in common low-molecular crvstals because an
nonlinear interactions may be concentrated at one chain ang'P y y

the problem turns out to be effectively one dimensional WithSUpersoniC excitation would cause very strong radiation due
ﬁo Cherenkovs effect. However, rather weak intermolecular

Interaction in a PE crystal allows for a sufficiently long life-
éime of the supersonic excitation despite the radiation. An-
ther unaddressed questidaven in the case of a single
hain is the interaction of the supersonic vacancies.
The purpose of the present paper is to explore the prop-
cancy, since two units are absent. The second type is a corﬁ—rtie.s of supersonic vacancy in a PE prystal. In the second
section analytical treatment of the motion of the supersonic

bination of the chain twist and stretching, which makes it . hai ded by i bl ‘ahbori
possible for only one group to be absent. This defect repre\—'aCanCy ina chain surrounded by immovabie neighboring

sents a simple vacancy. Both types of defects may be at regpains _is presented. The thir(_j section_ deals with ngmerical
or move with subsonic velocities—such behavior is rathers'mUIatlon of the vacancy motion both in the case of immov-

typical for vacancies. Similar results were obtained for othe;ﬁ]btler niligzbofr?hans Whﬁni all ;:ieglreeisn(\)/f frt?edtorg are released.
polymer systomé? 8], eraction of the vacancies is also investigated.

There exists one type of nonlinear excitation in an iso-
lated polyethylene chain that propagates with supersonic ve- Il. ANALYTICAL TREATMENT
locity and constitutes the localized wave of tension. The rea-

perturbation3-5].

Two types of such vacancies are explored. The first typ
constitutes one chain stretched in such a way that exactlg
two CH, groups are absent and crystalline order may be
preserved at infinity6]. This type is referred to as a biva-

Let us consider the nonlinear dynamics of a single PE
chain in the plane trans-conformatigRig. 1). The chain is
*Email address: balabaev@impb.psn.ru composed of Cklgroups having mass. The lengths of the
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Vn-1 Vh1 (|S+Un+1_Un)2+(|C+Un+1+Un)2=|2. (6)

U, 1 Consequently, we get
2Is(Upt1— un)—*_ZIC(Un-%—l—’—vn)"_(un#—l_un)2
+(Un+l+vn)2:0.

and, supposing, to be small compared t@, and preserving
> v small terms up to the second order, we finally get

FIG. 1. Scheme of the polyethylene chain in the transzigzag

2
Uyr1—ups (7
conformation(approximation of united ators (Unsa =)™ (7)

Uns1tvn=—=(Ups1—Up)— —=
n+1 n C( n+1 n) 2|C3

valence bonds are considered to be fixed and equalTiois The relationship betweef, and the displacements of the
approximation is correct in the case considered since the riadjacent masses may be calculated as
gidity of the valence bonds is about two orders more than the

rigidity of the valence angles. The energy associated with the 12086, =—1n_1-In,
deformation of potential angle® is determined by potential
function where
1 [,={ls+u, 1—Up,lc+v,1+vn}
Us(0)=5K4(0- 60)°, (1)

lhoi={ls+u,—u,_1,—lc—v,—v,_ 1}

where 6, is the equilibrium value of the valence angle.
The dynamics of the chain is considered in a continuu

limit. The displacements of the masses in the direction of the c

z axis are denoted as,, and the displacements in the trans-  cosé,,= cosf,+ T[(Un+vn—1)+(vn+1+vn)]

versal direction ag, (in Fig. 1, the arrows denote positive

directions of the displacements

: . 1
The potential energy of the chain is presented as + = (Upton-1) (U1 TR~ |§(Un+1—un71)
I

mThen, the expression for the angle obtains the form

1
M=Ky (6= 60)°, 2 1
n _I_2(un_un—1)(un+l_un)- (8)

and its kinetic energy as
Substituting Eq.(7) into Eq. (8) and preserving the terms

1 Cy with appropriate order of magnitude, we get
K=5mS (U402, 3 PRIoP ? J
2s 1 )
The changes of the angleés— 6, may be expressed via €OSfn— €OSfo =~ 7~ (Un 1~ Un-1)— m[(u”_u“‘l)

the displacements of the masses. Then, the requirement of
fixed length of the valence bonds makes the valuas,@ind cosé,
v, not independent and allows us to express the Lagrange +(Uns1=Un)?]— — 5 (U= Uy y)
function of the chain, I%c

LZK—H, (4) ><(un-#l un)- (9)

. From the other side,
via the variabless,, andu, only. Then, if it is supposed that
u, changes slowly with respect tg it is possible to make a cosf,= cog 6y— (6,— 6p) |
transition to continuum variablesandt and to express ev- _ )
erything via functionu(z,t). = €08 COS 0y~ 0p) — Sin g SIN(6— o)

L intr he notion . .
et us introduce the notions Preserving the terms up to the second order of magnitude, we

b, b6 obtain
S=Sin—, C=CO0S~. (5)
2 2
cosf,— cosf, cosh, )
. i i 0,— 0p=— - - — (cosh,,— cosby)”.
The condition of fixed length of the valence bonds is thus Sindo 2 sirt 6
expressed as (10
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1.6 — 412
" (a) 1 = dz . . 1 = dz s7
2 i K=—mf E(u2+v2):—mJ' — | ui+ —u?

2 —00 2 — 0 IS 4C2 ’
1.2 —/ (14)

The dynamical equation of the chain may be expressed via
08 : | | the Lagrange function in the following form:

L 9 9L 9 oL 9 o oL & 4L
04 — (b) . T — - T T — —¢ _O.

= (15
0.2 —
After simple calculations we get
2 412
0.0 3s 1 s
| | utt_vé Uz -+ _Zuzuzz+ §Szlzuzzz - _zuzzttzov

0.0 0.5 1.0 c 4c

di2ls (16)

FIG. 2. Plots of the velocitya) and inverse half-widtlib) of the whereVg= (2s/c) /K(,/m is the sound velocity.
soliton versus overall displacement. Equation(16) is not integrable but still its localized solu-

i . ) tions may be computed in the form
Substitution of Eq(9) into Eq.(10) expressed#,— 6, via the

displacements of masses in the direction of the chain axis. d
Let us perform the transition to the continuum variables. u(zt)=5{1+thlk(z=VD1;. 17
The variableai, .. ; are expressed via the derivativesugf)
up to the fourth order, Here V is the soliton velocity,k characterizes the inverse
’ 3 4 half-width of the soliton, andl is the overall displacement of
U= U~ lSU + (Is) u,,+(|5) e (Is) 4@ the chain after the passage of the soliton. The relationship
n+l n— n n— n n - . H
2 6 24 between these parameters of the solution is expressed as
(11)
. , . 2c?(4c? c?
Using the expression fof,— 6, and retaining the terms of K2+ = Slz3T1L k— —5-0,
appropriate order of magnitude, we get the expression for the ds?\3s s’
potential energy,
2d
2-v2| 14 2k 18
2s? =dz| , 1, s, V—V51+E : (18)
H:?Kg 70¢E UZ+ §S | u,u,, -+ guz . (12)

The concrete computations are performed with the fol-
The condition(7) leads to the following relationship between lowing parameter valuesk ,=79.15 kcal mol*rad 2; 6,
u andv in the continuum limit: =113°;1=1.53 A, m=14 amu. The sound velocity in this
case is equal to 14.71 km/sec. The pleotd) andV(d) are

_ E 13 presented in Fig. 2.
VT 56 Uzt (13 Let us take into consideration the field of immovable
neighbors of the chain considered. The surface of the poten-
The kinetic energy is thus expressed as tial energy of the chain embedded in the crystal of equal
e \ R
) R
£ 22 K0 \
g i “\\\:\\:‘:‘\“:’Q\’o -
N L1
,'::1’,’:’:’.'.'0’“‘&\““‘3‘“%&&,’,’,’,’::::: FIG. 3. Energetic surface
LR NN NI ) : )
& .-."W”‘“&Q# 7 of immovable neighbor chains
» \\\‘\\\‘&W [@ and (b) are different
\ \ .
= \\\\\\‘&”,' Des representatioris
= \\
RO

E) 60 120 180 240 300 360
@  7(deg) (b)
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chains is plotted in Fig. 3. The details of model used for 19

numerical simulation incorporate with the parameters of 1 2
intra- and intermolecular interaction are presented in the S

third section. We have considered the monoclinic structure of =

the crystal, where the planes of all macromolecules are par- 0

allel. The structure of the crystal was considered after the
process of relaxation. The plots of potential energy of inter-
molecular interaction presented in Fig. 3 were obtained by
artificial numerical rotation of the molecule chosétne
angle ¢) and by the displacement along the atitsplace- -50 0 50

mentu) in the field of immovable neighbors. The macromol- zfls

ecule shape that corresponds to the energy minimum is the FIG. 4. Plotsu(z) for two localized solutions of equatiof21):
transzigzag; therefore, we may consider only longitudinalv=1.385V, (1) andV=1.012V, (2).

displacement of the chain. The interaction potential related to

this displacementJ(u) is characterized completely by the o 2 oo
plots in Fig. 3, but for the purposes of the analytical treat- 25°Vs p32— ( 1 s'°V

2 N2\~ T 212\ /2
ment we need to know some parameters of this potential. (VE=Vop c2 3° PVt 4¢2
The most natural values that characterize it are the height of

the potential barrier ap=0 H=0.1753 kcal mol* and the 1, 2
period of small vibrations of the chain as a whole near the x| PP~ Zpu - EU(U)' (22)
equilibrium positionT=1.5 ps.

The intermolecular interaction may therefore be taken
into account via the effective on-site potentld{u). The Now we have to take advantage of the information we
motion equation for this case may be obtained easily fromhave concerning the effective potenti&{u) (due to period-
Eq. (16) by adding the appropriate right-hand side, icity we restrict ourselves to consideration of the period

—Is<u=<ls). This information may be summarized as fol-
32 1 42 Iow;: (@ U(0)=H; (b) U(.Is+s)=%m(271-s/T)2 (to ensure
eV ot 22ttt =220 = 2 period T of small vibrations,e<Is); (c) U’(0)=0; (d)
TS T 2 THer 3 22z g2 U@kt(+|s)=0 (the potential wells are symmetric with
respect to inversion
The conditions listed allow us to calculate the appropriate
approximation for the functiop(u). This approximation is
searched for in the following form:

1 dU(u)
m du

(19

We do not know the exact analytical form of the potential
U(u). Moreover, Eq.(19) obviously has no chance to be A2(y2— | 252)2
) : e . : X . (ue—1°s%)
solved analytically since it is a partial nonlinear differential p(u)= ————. (23)
equation of the fourth order. We will use for its solution the (1—au?)?
asymptotic procedure similar to one proposed in our paper
[12]. First, the approximation of the propagating wave is
introduced, Substituting Eq(23) into Eq.(22) and taking into account
the information concerning the potentidi(u), one obtains
the system of three algebraic equations for parametees
u=u(z-Vt). (200 and for the velocity of the solitol:

Then, after substituting Eq20) into Eq. (19), we get

3SZV2 1 S4|2v2 W
(VZ_V%)UU_ CZ SU, u’ — ( §SZIZV§+ " u™
1 9U(u)

(21)

m du Defect Region

The apostrophe denotes the derivative with respect to the V\/\AA/\M

collective variablez— Vt.
Equation(21) may be simplified by substituting%(u)
=u’ and one integration with respect tp FIG. 5. Schematic representation of a tensile defect.
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D(n,t)
(angstrom)

b t=0
2 —
t=2.55 ps
0- p
t=5.10 ps
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-8 T T T 1 J 1

0 100 200 300
Atom number

(b)

Atoms displacement(A)
|
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4A*2  1-5a* 2s?Vi B8A*3

VZ-V32)
( Y(1-a*)%2 1-a* c® (1-a*)®
oLz, SV aar? “1-5a*
375 4c?)|(1-a*)?| 1-a*

Here A* =Al%s?, a* =al’s?.

The system of equation@4) is solved numerically and
has two sets of solutions in the supersonic regidn: V
=1.385V, (=20.38 km/sec),A*=0.51, a*=0.02 (accu-
racy for this case is not very perfect, but the solution is rather
nonsensitivg (2) V=1.012V, (=14.89 km/sec), A*
=0.047,a* =0.52.

The plots of both solutionpu(z) versusz in units ofls]
are presented in Fig. 4. The first solution may be predicted
rather straightforwardly if considering the solutio{is),(18)
for a single chain when the overall displacement is consid-
ered to be equal tol2 (in other words, the surrounding
chains preserve the long-range order but their effect in the
core of the vacancy is neglected his solution has rather
high velocity and is very narrow—the continuum model used
in the theoretical investigation is very doubtful for such a
case.

The nature of the second solution is entirely different,
since it obviously cannot be treated as a small perturbation of
the solution for the chain without the crystalline field. It has

FIG. 6. Propagation of the vacancy in the chain surrounded byromparatively small velocity and is sufficiently smooth to be

the immovable neighborda) deformationD(n,t); (b) displace-

ments of atoms in different time moments.

V22 4A*2 1. SV2| | 4A*?
S(1-a*)? 137°° 4c?/[(1-a*)?
B 27ls\?
==
2522 1 2\/?
2 2\ A% 2 SA%3 2 *2\ A% 4
—_ J— — —_ +_ —
(V2=VHA 7 A*3—4 3vS 2 (1—a*?)A
2
=——H,
m
110 4 V/Vs
1.05 |
100 T T I
0 1000 t(ps)

FIG. 7. Jump of the velocity of the vacancy.

in line with the continuum approximation used. Therefore, it

may be a good candidate for the model of supersonic va-
cancy in a PE crystal. The next natural step is to check its
applicability by means of numerical simulation.

Ill. NUMERICAL SIMULATION
OF THE SUPERSONIC VACANCY

In order to proceed with the numerical simulation of a PE
crystal, we have used the model developed ea[lig}. The
rectangular cell of simulation consists of 23 polyethylene
chains (CH,—)300 @and one chain with two CkHgroups
less in order to generate the conditions for formation of the
supersonic vacancy. Periodic boundary conditions are ap-
plied in all directions and therefore any excitations are al-
lowed to move within infinitely large distances. Polymer
chains were modeled in the transzigzag conformation, CH
groups were introduced as united atoms with mass14

=751

u/ls

-752

-753

200 250 300 350
z/ls

FIG. 8. Shape of the vacancy for the lower value of the velocity
V=1.03Vs.
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] 1=0 Here §,=113° is the equilibrium value of the valence angle

1 andK,=79.15 kcalmol'rad 2 is the force constant. The
_245; t=3 ps potentials of the torsion angles were computed as

1 / 1=6 ps Uy(¢)=acog ¢)+Bcos(¢)+7, (27)

250 e t=9 ps where a=4.397 kcal/mol, 3=6.398 kcal/mol, y=1.998

1 =12 ps kcal/mol. All atoms not connected by either of the two above

, potentials interact via the following Lennard-Jones type po-
255 — tential:

| U(r—U(R), r<R
| | Unp(r)=

0 200 400 0, r=R
Atom number

Displacement (A)

(28)

Here U, ;(r)=4¢e[(o/r)**—(o/r)®] is standard Lennard-
FIG. 9. Decay of the vacancy to four solitons—plots of dis- jones potentialR is the limit distance of interaction. We
placements at different time moments. have used the following parameter values:=0.12
i kcal/mol, 0=3.8, andR=2.25>.
amu. The valence bonds were supposed to have fixed length the equations of motion of the system with geometrical
|=1.53 A. The interatomic interaction was described byconstraints imposed by fixed valence bonds are written in
means of potential functiobl(r), Cartesian components as Lagrange equations of the first

typev

U(r)=2 Us(6)+ 2 Ug(e)+ 2 Unp(lri—ri)). d?r; U ot

(25) = 0N

M o e M 29
Herer={r,, ...y} are the position vectors of all united ) ] ) N ]
atoms in the cell; the first term in the right-hand side containsl hese equations, together with algebraic conditions of fixed
the summation over all valence angles, the second one ov¥plence bonds
all conformational angles, and the third over all pairs of par-

ticles connected neither by valence angle nor by conforma- fnN=0, »=1,... N, (30

tional angle interactions. The model takes into account nobrovide a complete description of the dynamics of the sys-

only the interactions within the cell but also the interactionsiem provided that the appropriate initial conditions are also

with the particles of image cells due to periodic getermined. The algorithm of integration is presented in de-
boundary conditions. The valence angle potential isgj elsewherg13]. The sizes of the calculation cell were

introduced as 3ax 4bx 150, 3ax4bx 200c, and 3x 4bx 300, where

1 a=7.031,b=4.510, andc=2.554 A are the parameters of

Us(0)= =K (- )2 (26)  the cell corresponding to the energy minimum. _ _

2 The first series of numerical experiments was the investi-

gation of the vacancy motion in the field of immovable

Vi/ Vs (2) neighbors. To perform this calculation the initial conditions

0.00 - of the particles of the short chain were introduced according
V V to the formula(17) with different initial velocities. The other

chains were artificially fixed. The initial situation for the
simulation is schematically plotted in Fig. 5.

Starting from very different initial situations, the super-
sonic vacancy almost alwaysxcluding the cases with rela-
tively small initial energy tended to a steady-shaped solution
having a velocity of about 15.5 km/see=(.054/,) and a
width of about 90 A or 70 bondésee Fig. 6. This param-
-0.05 | eter is in rather good agreement with the results of the ana-
lytical treatment presented above, although the width of the
vacancy turns out to be about 30% more. Probably the accu-
-0.10 F————— —— racy of the analytical procedure may be increased by consid-
eration of further approximations but such treatment is ex-
tremely difficult from a technical point of view.

Great efforts were made to establish the exact shape of the

FIG. 10. Velocity of the first atom at successive passages of thgolution, or, in other words, to eliminate phonons from the
supersonic vacancy in the surrounding of immovable neigh@rs System in order to get pure soliton. Special friction was in-
and in isolated chaifb). troduced far from the core of the vacancy and the shape has

-0.05

(b)
0.00

Time (ps)
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D(n,t)
(angstrom)

1=2.55 ps

o_

) _—ﬁ FIG. 11. Motion of the super-
i sonic vacancy in the crystal with

-4 ‘A_/_/ﬂ;_/gsps‘ all degrees of freedon(a) defor-

'6;_’///, mationD(n,t); (b) displacements
. of atoms in different time

-8 ‘ | ' | - \ moments.

0 100 200 300
Atom number

(b)

Atoms displacement (A)
n
|

repeated itself for a long time. However, the discreteness dfjticsolution, as it considers only the smooth approximation
the lattice leads to small irradiation of energy and the solitorof the vacancy shape and does not take into account its fine
loses its energy. structure.

Interestingly, this loss does not occur smoothly. The en- The crucial physical question to be solved by means
ergy of the vacancy decreases very slowly until it jumps to aof numerical simulation is whether the supersonic vacancy
new supersonic state with lower velocity(about investigated in the model system of immovable neighbors
15.15 km/sec or 1.08) and even larger lifetiméwe did  will persist in a realistic model with all degrees of free-
not observe any further decay of this solujiofihe jump of dom released. The results of appropriate simulations are
the soliton velocity in presented in Fig. 7 and the shape opresented in Fig. 11. It is demonstrated that within the
the vacancy with lower velocity in Fig. 8. The lifetime of the characteristic times of about 5 fer at characteristic dis-
vacancy in the field of immovable neighbors was proved taances of about 75 nnthe supersonic vacancy does not lose
be not less than 1 ns. its individuality and propagates with a velocity close to

As mentioned above, the analytic solution with higher15 km/sec. This fact substantiates the idea of considerable
velocity (which cannot persist in the crystalorresponds to a  effect of the supersonic vacancies investigated above on all
single soliton of a single chain with appropriate overall dis-processes in a polymer crystal where the vacancies are in-
placement. If the supersonic vacancy is transferred to theolved.
chain not interacting with the neighbors, it decays to a se- The soliton nature of the supersonic vacancy considered
guence of four solitons moving with close but different ve-justifies the investigation of collision of two such vacancies.
locities, the lowest one corresponding to the velocity of theThe appropriate numerical simulatigsee Fig. 12 demon-
vacancy(Figs. 9 and 1D This result means that the super- strates that both in the case of immovable neighbors and in
sonic vacancy represents the coupled state of few solitons afie case of all degrees of freedom released the vacancies
the polyethylene chain. Such coupling is impossible in anteract almost elastically. Such behavior is typical to soliton
single chain and occurs due to on-site potential of the neighsolutions although the equations describing the motion of the
boring chains. The possibility of such coupling was dis-yacancies are not integrable.
cussed earlier ii14], but a PE crystal is the first physical
system where this effect may be at least simulated. The phe-
nomenon of the soliton coupling allows us to explain the
effect of smooth decay and subsequent “drop” of the energy
of the vacancy. The additional energy may be attributed to a New types of structural defects in a polyethylene crystal
alternative metastable coupled state of the soliton formindnave been investigated. These structural defects are vacan-
the vacancy. Both coupled states correspond to the same ar@es (more exactly, bivacancies, because they require two

IV. CONCLUSION

D(n,t)
(angstrom)

D(n,t)
(angstrom)

FIG. 12. Collision of two va-
cancies(a immovable neighbors;
(b) movable neighbors.

(a) (b)
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